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Outstanding Challenges of Massive Star 
Formation

• What is the formation Mechanism:  Gravitational collapse of an unstable 
cloud;  Competitive Bondi-Hoyle accretion;  Collisional Coalescence?

• How can gravitationally collapsing clouds overcome the Eddington limit due 
to radiation pressure?

• What determines the upper limit for High Mass Stars?  
(120Msun  →  150Msun)

• How do feedback mechanisms such as protostellar outflows and radiation 
affect protostellar evolution?  These mechanisms can also have a dramatic 
effect on cluster formation

   

 ⇒  ORION: AMR Magneto-Rad-Hydro; self-gravity,sink particles,  
stellar evolutionary models, 2nd order Godunov, multi-grid solves

!       Radiation transport formulated in mixed frame to order v/c in all         
regimes (static diffusion, dynamic diffusion, free streaming)
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Theoretical Challenges of High Mass Star Formation

1. Effects of Strong Radiation Pressure and Radiative Heating

— Massive stars M ≥ 20 M have tK < tform (Shu et al. 1987) and begin 
nuclear burning during accretion phase
Radiates enormous energy
For  M ≥ 100 M 

however  σdust >> σT 

 
But, observations show M ~ 100 M (Massey 1998, 2003)

Fundamental Problem: How is it possible to sustain a sufficiently 
high-mass accretion rate onto protostellar core despite 
“Eddington” barrier?

Do radiation pressure and radiation heating provide a natural limit to 
the formation of high mass stars? 
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Theoretical Challenges of High Mass Star 
Formation (cont.)

2. Effects of Protostellar outflows

— Contemporary Massive stars produce strong radiation driven 
stellar winds with momentum fluxes 

— Massive YSO have observed (CO) protostellar outflows where                         
                      (Richer et al. 2000; Cesaroni 2004) 

! If outflows where spherically symmetric this would create a 
greater obstacle to massive star formation than radiation 
pressure

 but, flows are found to be collimated with collimation factors 2-10 
(Beuther 2002, 2003, 2004)

Fundamental Problem: How do outflows effect the formation of 
Massive stars? How do outflows interact with radiation from the 
protostar?  Do outflows limit the mass of a star?

  

€ 

˙ M v ≤ L /c

  

€ 

˙ M v ~ 100L /c
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Formation of  a Massive Binary System (Krumholz, 
Klein and McKee, Science, 2009) 

• Observations indicate most 
massive O-stars have one or 
more companions; binaries are 
common (> 59%) Gies 2008

• Massive protostellar disks are 
unstable to fragmentation at R≥ 
150AU for M* ≥ 4 M (Kratter & 
Matzner 2006)

• Radiation driven Rayleigh-
Taylor instability breaks 
Eddington Barrier(KKM ʻ05, ʻ09)

• Gravitational instability in disk  
⇒ massive binary system 

    32 M and 18 M and low mass star 
0.1 M 

• Radiative feedback  from 
massive binary results in highly 
asymmetric bubble formation 
and radiative heating 
supressing small scale frag.
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Formation of Radiation Driven Bubble and Evolution 
of Radiative Heating Feedback of Protostellar Core
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Radiation Feedback, Fragmentation and Environmental 
Dependence of the IMF (Krumholz,Cunningham, Klein & McKee ApJ, 2010)
 

 

•  Column densities L= 0.1, M=1.0, H=10.0 g cm-2

(Diffuse clouds such as Taurus, Perseus and 
Ophiuchus; typical galactic massive star forming 
regions; extra-galactic super star clusters)
•  Surface density determines effectiveness of 
trapping radiation and accretion luminosities of 
forming stars (Krumholz, McKee 2008) 

• As surface density increases, the suppression of 
fragmentation increases ⇒ (L) small cluster, no 
massive stars, depleted disks; (M) massive binary 
with 2 circumstellar disks and large circumbinary 
disk; (H) single large disk with single massive star

⇒Higher surface density environments produce 
higher accretion rates and thus higher accretion 
luminosities from embedded protostars.
Higher Σ environments lead to higher optical depths 
which trap resulting radiation more effectively   
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Cumulative Distribution Function of Stellar Mass t= 0.6 tff
(Krumholz, Cunningham, Klein & McKee ApJ 2010)

• (L) system consists of several low mass stars of roughly 
comparable mass; (M) most of mass in 2 stars forming binary; (H) 
comparable fraction of mass in single massive star

 ⇒ Stellar IMF need not be universal between regions of low 
       surface density (Σ << 1 g cm-2 ) and those of high surface
       density (Σ >> 1 g cm-2 )
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Feedback Effects of Protostellar Outflows

• High mass protostars have outflows that look like larger 
versions of low mass protostellar outflows (Beuther et al. 2004)

• Outflows are launched inside starʼs dust destruction radius

• Due to high outflow velocities, there is no time for dust grains 
to regrow inside outflow cavities. Grains reach only ~10–3µm by 
the time they escape the core. 

• Because grains are small, outflow cavities are optically thin.

• Thin cavities can be very effective at collimating protostellar 
radiation, reducing the radiation pressure force in the 
equatorial plane

• Krumholz, McKee & Klein, (2005) using toy Monte-Carlo 
radiative transfer calculations find outflows cause a factor of 
5 – 10 radiation pressure force reduction

• Outflows may be responsible for driving turbulence in clumps
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HMSF with Protostellar Outflows:  Late Time Evolution 
t= 60 kyr (Cunningham, Klein, McKee and Krumholz 2010, ApJ in Prep)

                         
52 M  accreted through disk to protostellar system; 30% ejected into outflow wind     
⇒  reduction in radiation forces in disk results in protostar still building mass

• Final evolution results in a massive primary with 35 M and a massive secondary 
with > 17 M    Each has a protostellar disk of 4.5 M and 2.9 M respectively 
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HMSF with Protostellar Outflows in Turbulent Core: 
(Cunningham, Klein, McKee and Krumholz 2010, ApJ in Prep)

• Mcore = 300 M; Ti = 20K; ∑ = 2 g cm-2 ; Rcore = 0.1pc; Mturb = 13.5; <ρ> = 4.84x10-18 g cm-3

• Early evolution t= 12.8 Kyr results in a massive primary with 13.5 M and a secondary 
with 2.3 M forming in a highly asymmetric turbulent disk  

• Outflow has large dynamical affect in sweeping out wide region of turbulent core as wind 
becomes entrained in turbulent filaments

⇒ Outflow cools core relieving radiation pressure resulting in formation of high mass 
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Environmental Effects on Radiation Beaming in HMSF 
with Protostellar Outflows in a Turbulent Core

• Radiation beaming is most collimated for Σ = 10 g cm-2 where cavity is well 
confined  ⇒ pole to equator contrast ≈ 7     (consistent with KKM 2005)

• For less dense cores, beaming effect is diminished.  

• Flashlight effect is destroyed  as core becomes more depleted by strong 
dynamical effects of winds in low density environments
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Cluster Formation in Driven Turbulent Cloud with Radiation Feedback 
show Local Environs Affected within 0.05 pc (Offner, Klein, McKee, Krumholz  ApJ ʻ09)

Column density              Density weighted temperature
• Radiation pressure effects not  significant anywhere in cloud since advection of radiation 
enthalpy is small compared to rate of radiation diffusion
• Star formation commences at  t~ .50 tff      T = 10 - 50K variation in cloud
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Stellar Mass Distribution of Star-disk System at 1tff 

• Large temperature range in the RT simulation has profound effect on stellar 
mass distribution

• Increased thermal support in protostellar disk acts to suppress gravitational 
disk instability and secondary fragmentation In the core

• Protostellar disks in the NRT simulation suffer high rates of fragmentation 
!      ⇒ SFRff (NRT) = 13%      SFRff (RT) = 7%   good agreement observations 

(Krumholz and Tan 2007)
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Low Mass Cluster Formation with Radiation and 
Protostellar Outflow Feedback  (Hansen, Klein, McKee 2010)

• If a weak wind shock interacts with  an already fragmenting filament, it will lead to more 
fragmentation

• If it interacts with a marginally gravitationally bound filament, it can initiate collapse

• If it interacts with a low density filament, the extra compression can eventually lead to more 
fragmentation when that filament finally does collapse

• If a strong shock hits a filament, it can move a mass of gas away and then that can collapse.

• Winds interacting with filaments lead to 
enhanced star formation

• Lower mass stars form due to enhanced 
fragmentation and outflow loss results in lower 
luminosities and lower heating

    ⇒ less thermal support so higher 
fragmentation 

! ⇒ < L >  = 6.5 L;  Lmed =  1.7 L

Obser.  < L > ~ 5.3 L;    Lmed ~ 1.5 L 

 C2D sample Dunham, Evans 2010
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Conclusions

High Mass Star Formation
    3-D high resolution Rad-Hydro AMR simulations with ORION demonstrate:
• Two new mechanisms to overcome radiation pressure barrier to achieve high mass star formation 

⇒ high mass binary system
— 3-D Rayleigh-Taylor instabilities in radiation driven bubbles appear to be important in 

allowing accretion onto protostellar core
— Protostellar outflows resulting in optically thin cavities promote focusing of radiation and 

reduction of radiation pressure → enhances accretion
— Radiation feedback from accreting protostars inhibits fragmentation (KKM 2007)

— Outflows dynamically effect larger volume of core and may result in lower ∑threshold

! !                 Low Mass Star Formation
— Inclusion of RT has a profound effect on temperature distribution, accretion and final stellar 

masses

— Heating by RT stabilizes protostellar disks and suppresses small scale frag

— Vast majority of heating from protostellar Rad. Not comp or visc. dissipation

— For low mass SF, heating is local so, no inhibition of Turb. Frag. Elsewhere

— Outflows interact with filaments enhancing small scale multiplicity
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